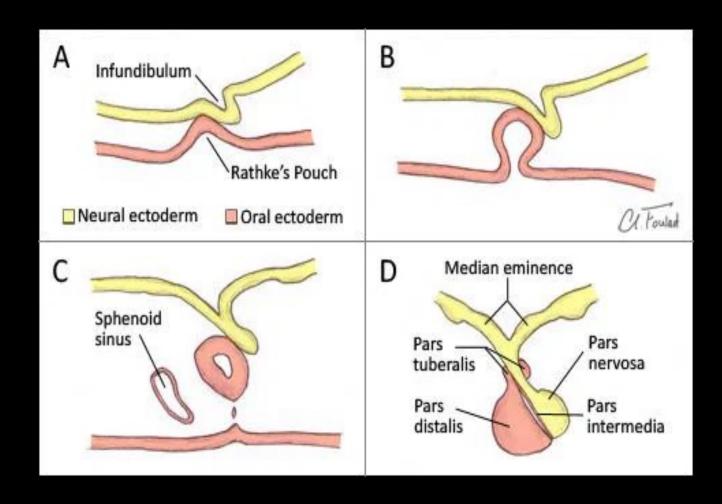


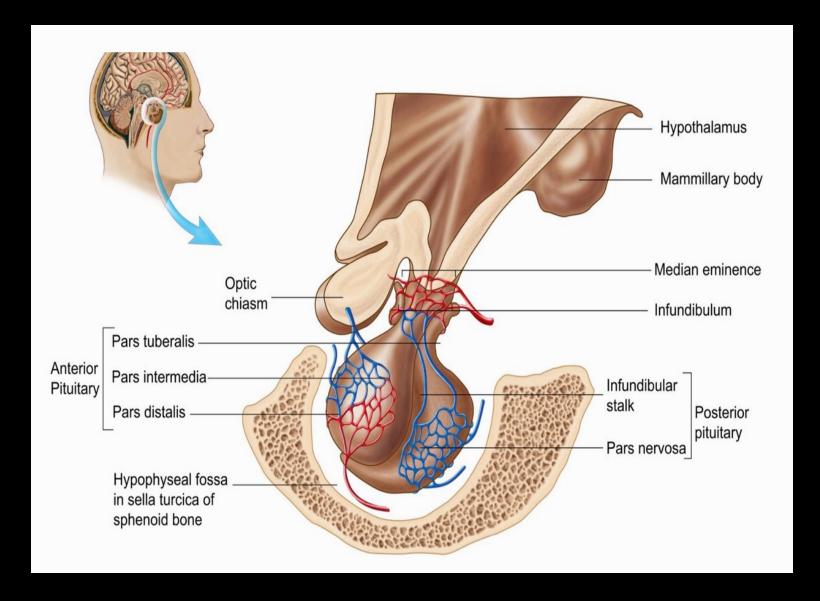
Anesthesia Update 2023

Minh Hai Tran Neuroanesthesia Dept, UCSD

Your Case.....



- 38 M
- BMI 45, Ht 6"7', Wt 18okg
- DM₂, HT, OSA, Migraines
- Bitemporal hemianopia, severe headaches
- s/f Endoscopic endonasal transsphenoidal surgery for removal of of a pituitary lesion


How do you prepare for this case?

- What type of pituitary mass is it? Is this a secreting or non secreting pituitary mass?
- What are the current neurological deficits?
- Look at the imaging
- How do I set up this case?
- Will they be using neuromonitoring?
- What complications should I be prepared for?

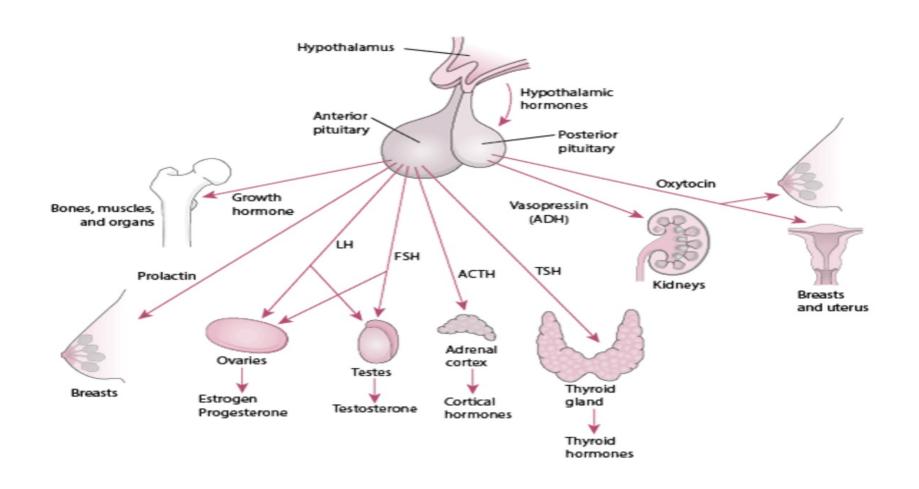
Embryology of the Pituitary Gland

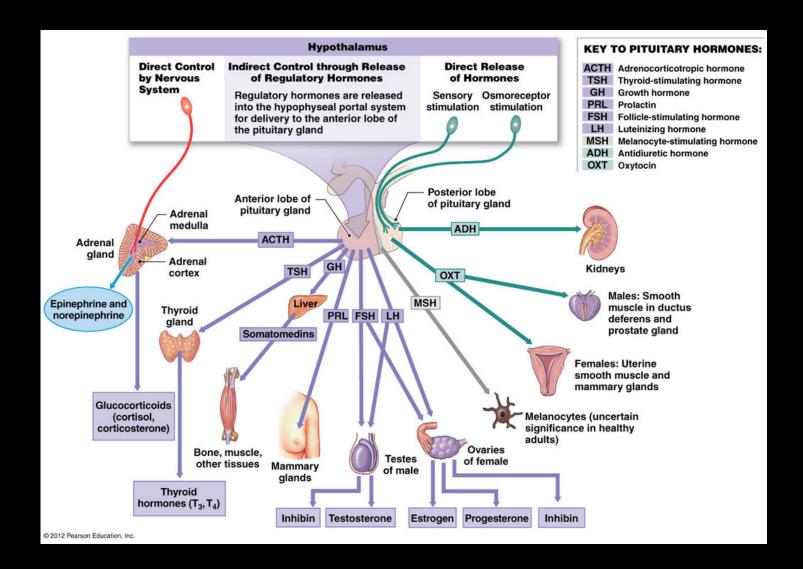
• Consists of both neural tissue and mucosal tissue.

Anatomy of the Pituitary Gland


- Pea sized 0.5-1.0 g, <1cm
- Anterior glandular adenohypophysis 80%
- Infundibulum
- Posterior hypophysis
- Hypophyseal portal circulation

TYPES OF PITUITARY MASSES


- -PITUITARY ADENOMAS *
- -RATHKE'S CLEFT CYSTS
- -SELECTED PARASELLAR MENINGIOMAS
- -CRANIOPHARYNGIOMAS
- -CLIVAL CHORDOMAS


Pituitary Adenomas

- 25% Non-Secretory
 - Function lost in decreasing order FSH/LH→GH,
 ACTH→ TSH
- 75% Secretory
 - Most to least common PRL (50%)→GH (20%)→ACTH (20%)→Mixed (10%)

The Pituitary and Its Target Organs

Lab Tests

- TSH
- PRL
- FSH, LH
- ACTH
- IGF-1
- Oral Glucose Tolerance Test with GH.

Anesthesia Concerns

Excess Hormone

- Cushings Disease
 (↑ACTH leading to ↑Cortisol)
- Acromegaly
 (†GH leading to †IGF-1

Lack of Hormone

- Hypothyroidism
 (\JTSH leading to \JThyroxine)
- Central Diabetes insipidus (\(\Lambda DH \) or vasopressin)

Hormonal Syndromes – Cushing's Disease

- ACTH from anterior pituitary leading to raised cortisol
- -Treated with medication, radiation +/-surgery.

Medications

- 1. Block adrenal synthesis (Ketoconazole)
- 2. Glucocorticoid Receptor antagonists (Mifepristone)
- 3. Block ACTH secretion (Dopamine agonists-Bromocriptine)

Cushing Syndrome

 Due to excess cortisol-like medication (prednisone) or tumor that produces or results in production of excessive cortisol [Cases due to a pituitary adenoma = Cushing disease]

Anesthesia Considerations – Cushings Disease

Central obesity

• Buffalo hump and moon facies may increase difficulty with airway management

OSA

• Likely related to obesity, but also with myopathy of airway muscles

Cardiovascular

- Hypertension, dyslipidemia, increased risk of MI, stroke, and thromboembolism
- Preoperative blockade of mineralocorticoid activity with spironolactone may help Rx HTN

Endocrine

Glucose intolerance

Renal

• Electrolyte abnormalities

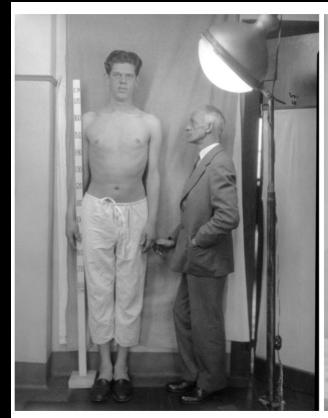


Figure 1: Cushing maintained an intense interest in pituitary surgery throughout his career. In these rare photos of Cushing with a patient, he demonstrates the features of acromegaly (Courtesy of the Cushing Brain Tumor Registry at Yale University).

Hormonal Syndromes – Acromegaly

- -↑GH from anterior pituitary leading to raised IGF-1
- -Treated with medication, radiation +/- surgery.

Medications

- 1. Dopamine Agonist. (Bromocriptine)
- 2. Dopamine precursor (L-DOPA)

Acromegaly & the Difficult Airway

- Mandibular and maxillary enlargement
- Macroglossia
- Prognathism
- Swelling of soft palate and pharyngeal wall
- Thickening of true and false vocal cords
- Vocal cord paresis
- Tracheal compression
- Hypertrophy of epiglottis and peri-epiglottic tissues

Acromegaly & the Difficult Airway

- Reported incidence of difficult intubation varies between 9-40% compared to 2-6% in patients without acromegaly
- Soft tissue changes associated with acromegaly MAY be reversible with medical management
- Bony changes are irreversible; regression of soft tissue changes does not guarantee easier airway management
- Patients without hoarseness or dyspnea and overall favorable airway exam are typically approached in a routine manner
- If airway difficulties are suspected, it is always prudent to secure the airway by awake techniques

Anesthesia Considerations - Acromegaly

Cardiovascular

- Hypertension, LV hypertrophy, arrhythmias, cardiomyopathy (depressed EF)
- Preoperative cardiac testing and intraoperative monitoring should be based on preoperative signs and symptoms

Obstructive sleep apnea (OSA)

- OSA occurs in up to 50% of patients with acromegaly
- More sensitive to respiratory depressant effects of sedative and opioids
- Use of CPAP/BPAP post-operatively should be discussed with surgeon
- Positive pressure increases risk and pneumocephalus and meningitis

Diabetes Mellitus

• Occurs in up to 15% of patients with acromegaly

Difficult Access

• Thick skin and connective tissue. Consider having ultrasound available.

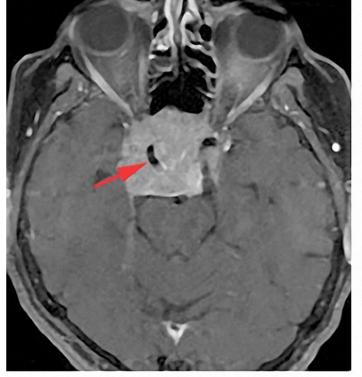
LOOK AT MEDICATIONS

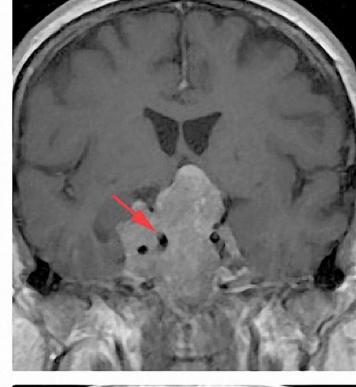
Are they on replacement therapy?

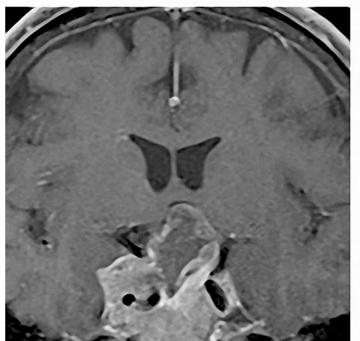
Thyroxine

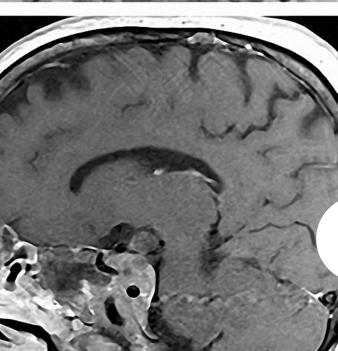
Steroids

Are they on suppressive therapy?

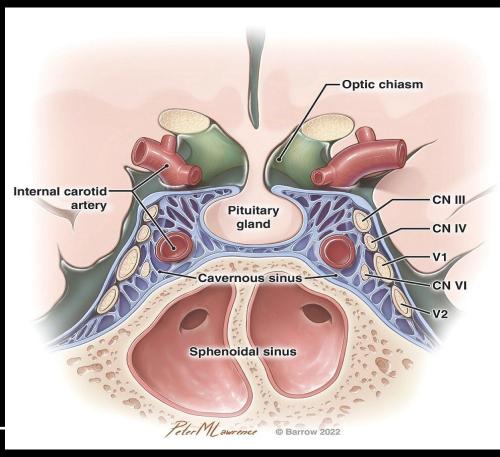

Bromocriptine


Ketoconazole




LOOK AT THE IMAGING

- 1. Size?
- 2. Extension past the sella?
- 3. Compression of nearby structures
- 4. Are vascular structures at risk



Surrounding Structures

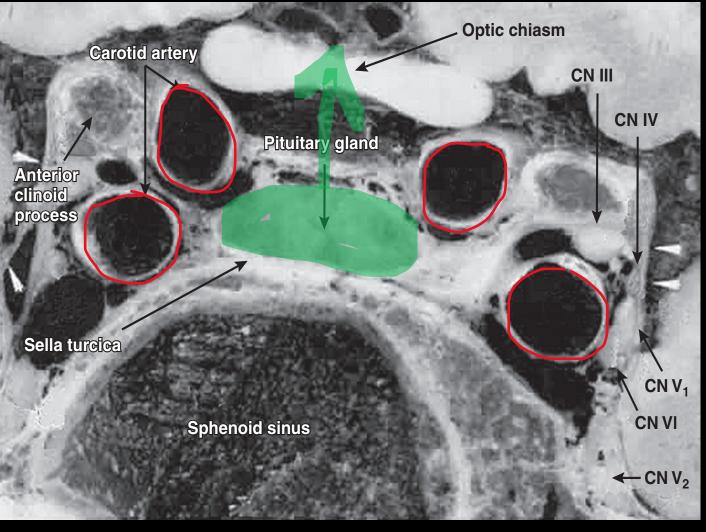


Fig 19.1 Cottrell & Patel Neuroanesthesia (inpress) 2023. Adapted from *Anaesthesia for Patients with Endocrine Disease* edited by James (2010)

Surgical Approaches.

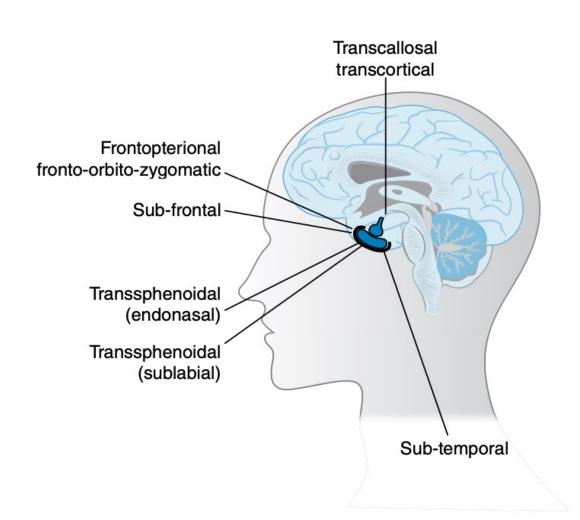
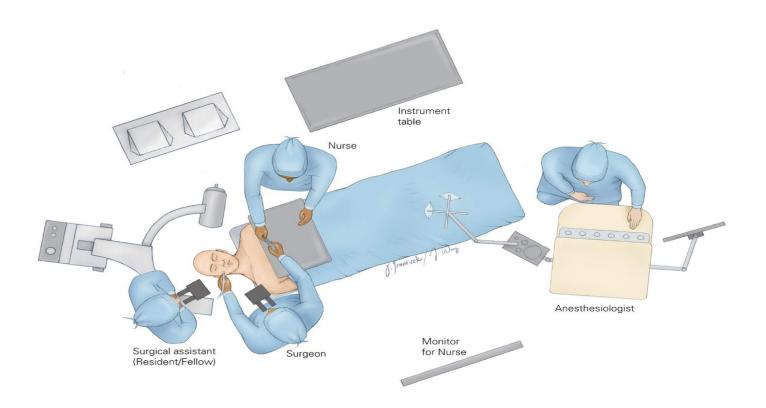


Fig 19.4 Cottrell & Patel Neuroanesthesia (inpress). 2023


Endoscopic techniques vs open techniques

• Endoscopic Endonasal Transsphenoidal

- Masses confined to the paramedian sellar and suprasellar territories medial to the carotid arteries and inferior to the subchiasmatic space
- Vertical growth not a contraindication

Sublabial Transsphenoidal

- Surgical preferences
- Open Craniotomy (Subfrontal, Frontopterional, Transcallosal/Transcortical, Subtemporal)
 - sphenoid sinusitis
 - intrasellar vascular anomalies, ectatic midline carotid arteries,
 - significant lateral suprasellar extension of tumor, especially when the epicenter is lateral to the carotid artery

https://www.neurosurgicalatlas.com/volumes/cranial-approaches/transnasal-transsphenoidal-approaches/microscope-guided-endonasal-transsphenoidal-approach

$OPERATING\ ROOM\ SET\ UP\ FOR$ $TRANSSPHENOIDAL\ ENDOSCOPIC\ SURGERY$

- Standard ASA Monitors
- GETA
- 2x PIV: one in upper extremity, one in lower extremity
- Post-induction arterial line
- Foley Catheter for urine output monitoring (i.e risk of DI) and length of the case. Temperature monitoring if available.
- Type & Screen

Preparation

Anxiolytics

- Preferable avoid if possible unless extremely high anxiety
- Caution in patients at risk of respiratory depression
- Discuss with surgeon **Dexamethasone**
 - Can inhibit HPA axis over 24hrs
 - May give a false diagnosis of pituitary insufficiency which some surgeons use as a marker for successful tumor resection.

- ICP are usually not an issue (slow growing tumor)
- UCSD surgeons prefer neuromonitoring so we use TIVA +/- o.5 MAC, usually no neuromuscular blockade after induction.
- The majority of the surgery is not painful but anticipate elevated hemodynamics with nasal injection of LA with Epinephrine, and during the intranasal approach, drilling of the sphenoid bone
- Surgeons may ask for lower BP's to facilitate their view

- Taping Methods
 - LEAVE VERMILLION BORDER FREE
 - ETT Midline
 - (Bilateral bite blocks for facial symmetry)
- Patient positioning in low reclined beach chair
- +/- Pins vs headrest

- Oral gastric tube before extubation.
- (Our surgeons don't use a throat pack)
- Important to remind surgeons to let you know approximate time to surgical completion – no closure just packing the nose with fat.

Emergence

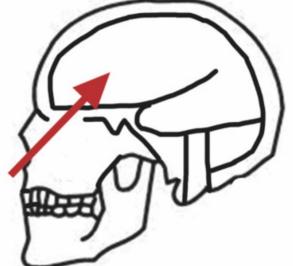
- Smooth emergence.
 - AVOID COUGHING, VOMITING, STRAINING
 - AVOID HYPERTENSION

- †CVP can increase bleeding
- †ICP can exacerbate CSF leak
- Coughing and bucking can force nasopharyngeal flora into the wound leading to meningitis

• AVOID POSITIVE
PRESSURE VENTILATION
POST EXTUBATION!!!.

World Neurosurgery

Volume 141, September 2020, Pages 357-362



Case Report

Tension Pneumocephalus from Positive Pressure Ventilation Following Endoscopic Skull Base Surgery: Case Series and an Institutional Protocol for the Management of Postoperative Respiratory Distress

 $\label{eq:mended} Mendel Castle-Kirszbaum ^1 \overset{A}{\sim} \boxtimes , Yi Yuen Wang ^2, James King ^3, Brent Uren ^4, Martin Kim ^5 , R. Andrew Danks ^1, ^6, Tony Goldschlager ^1, ^6$

- Background: Tension pneumocephalus (TP) is a rare but feared complication of endoscopic endonasal skull base surgery. In contrast to simple pneumocephalus, which is common after endoscopic transnasal approaches and managed conservatively, TP represents a neurosurgical emergency and mandates urgent decompression.
- Case description: Here we present 2 cases of TP as a consequence of positive pressure ventilation following endoscopic endonasal skull base surgery. Both occurred during resuscitation for postoperative hypoxia. These cases prompted the development of an institution-wide protocol to identify and manage patients at risk of TP after extended skull base approaches.
- Conclusions: To our knowledge, these are the only such cases
 of postoperative TP following positive pressure ventilation in
 the literature.

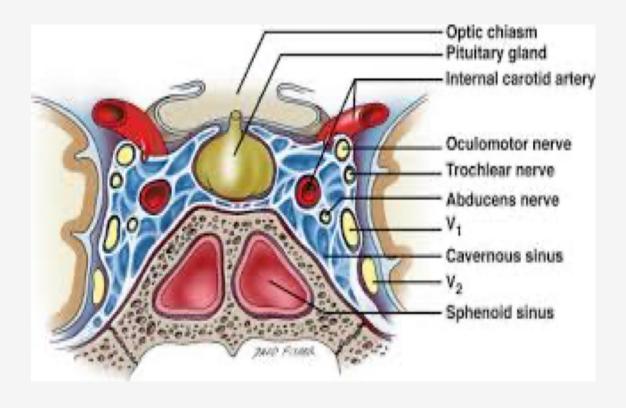
Asystole, Bradycardia

CSF Leak, Meningitis

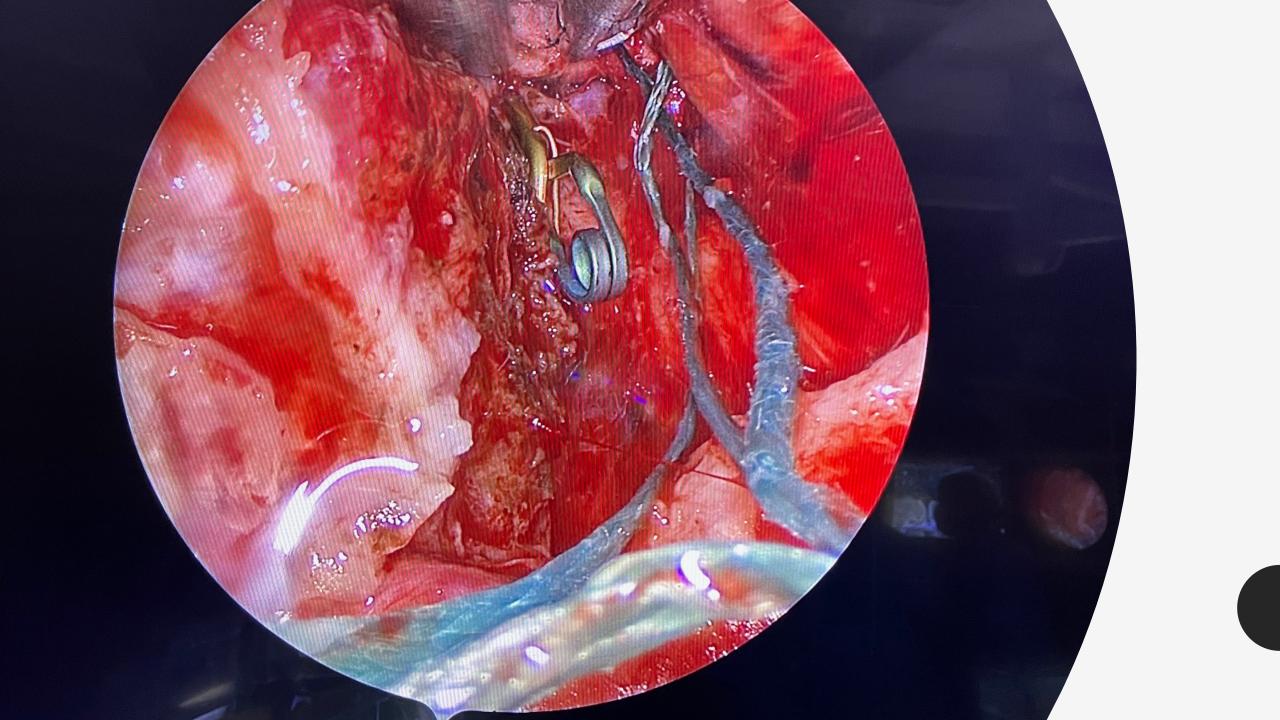
Adrenal suppression, Panhypopituitarism

Bleeding (extracranial/intracranial) - arterial and cavernous sinus bleeding

Pneumocephalus


ICA occlusions and nerve compression of CN 3, 4, 5, 6 with nasal packing

Aspiration


Vision loss

Diabetes insipidus

SIADH

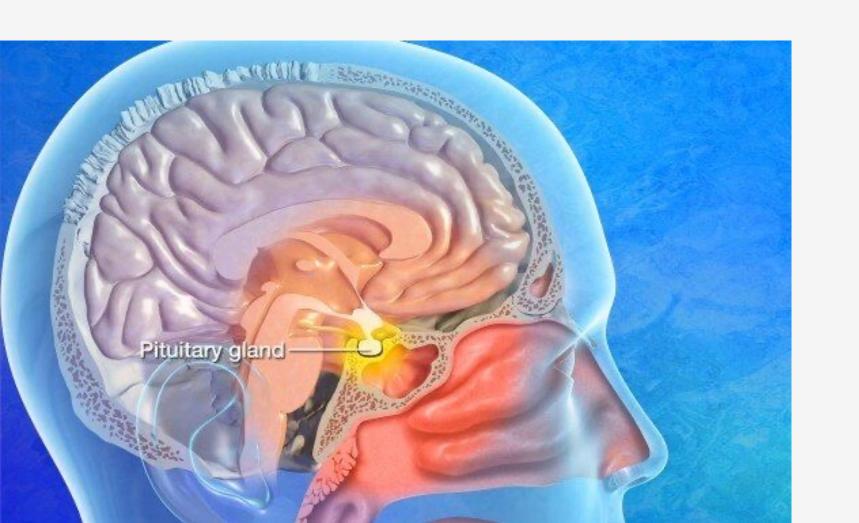
Complications

Table 19.2. Differential Diagnosis of, Diabetes Insipidus, Syndrome of Inappropriate Antidiuretic Hormone and Cerebral Salt Wasting.			
	DI	SIADH	CSW
Volume status	hypovolemia	normo- or hypervolemia	hypovolemia
Urine output	increased	low to normal	increased
Serum sodium	increased	decreased	decreased
Urine Sodium	decreased	increased	increased
Serum osmolality	increased	decreased	decreased
Urine osmolality	decreased	increased	increased

Table 19.2.


Differential Diagnosis of Diabetes Insipidus (DI), Syndrome of Inappropriate Antidiuretic Hormone (SIADH) and Cerebral Salt Wasting (CSW).

Diabetes insipidus


- Dilute polyuria of central DI is caused by diminished or absent antidiuretic hormone (ADH) synthesis and/or release
- <u>Causes</u>: Direct hypothalamic injury, pituitary stalk edema, high pituitary stalk dissection
- <u>Symptoms</u>: polydipsia (if awake), polyuria, high serum osmolarity
- <u>DDx</u>: Diuresis from mannitol, hyperglycemia, excessive fluid administration
- <u>Dx</u>: Urine specific gravity < 1.002
- Management: Increased oral intake (if awake), IV fluids (2/3 previous hour urine output plus maintenance), DDAVP 1-2 ug IV or subQ every 6-12 hours if urine output excessive

Your Case.....

- 48 M
- BMI, Ht 6"7', Wt 150kg
- DM₂, HT, OSA, Migraines
- Bitemporal hemianopia, severe headaches
- s/f Endoscopic endonasal surgery

Take home points?

- Investigate type of mass. Is it secretory or not? Do I need to plan for endocrine effects.
- What are the current neurological deficits?
- Look at the imaging
- Ask if neuromonitoring is involved.
- Do I need to plan for a difficult airway
- Quick finish with smooth emergence avoiding PPV.

References

- Cottrell & Patel Ch19. (In Press) 2023.
- Pituitary Gland Anatomy. A Foulad, N Bhandakar and A Meyers. July 29th 2015. Emedicine. https://emedicine.medscape.com/article/1899167-overview?form=fpf
- Goldshlager et al. 2020. Tension pneumocephalus from positive pressure ventilation following endoscopic skull base surgery: A case series and an institutional protocol for the management of postoperative respiratory distress. World Neurosurgery Volume 141 Sept 2020 p357-362
- https://emedicine.medscape.com/article/1899167-overview?form=fpf
- https://www.merckmanuals.com/en-ca/home/hormonal-and-metabolic-disorders/pituitary-gland-disorders/argininevasopressin-deficiency-central-diabetes-insipidus
- http://www.emdocs.net/emaam-cushings-syndrome/
- <a href="https://www.neurosurgicalatlas.com/volumes/cranial-approaches/transnasal-transsphenoidal-approaches/microscope-guided-endonasal-transsphenoidal-approaches/microscope
- https://www.uclahealth.org/medical-services/neurosurgery/pituitary-skull-base-tumor/conditions/pituitary-adenomas/acromegaly